

Seminar School of Mathematics and Statistics

DATE: 3 DECEMBER 2018

TITLE

The group of distance preserving automorphisms of \mathbb{R}^n

VENUE | TIME

Seminar Room I 03:45 P.M.– 04:45 P.M.

SPEAKER

Prof. M.S.Raghunathan TIFR, Mumbai & Joint Faculty ICTS-TIFR, Bangalore .

ABSTRACT

A theorem Euler says that any displacement of a rigid body in \mathbb{R}^3 is the composition of a translation followed by a rotation. This can be generalized to all dimensions as follows: Let $A \subset \mathbb{R}^n$ be a subset with non-void interior and $a \in A$ an interior point. Let $F : ([0,1] \times \mathbb{A}^n$ be a continuous map such that F(0,p) = p for all $p \in A$ and d(F(t,p), F(t,q)) = d(p,q) for all p,q in A and $t \in [0,1]$. Then there are continuous maps $a : [0,1]^n$ and L : [0,1](n,R) such that a(0) = a, a(t) = F(t,a) for all $t \in [0,1]$, L(t) is a linear automorphism of determinant 1 preserving the inner product on \mathbb{R}^n . We will discuss general facts about the orthogonal group, the group of automorphisms of \mathbb{R}^n preserving distance between points and give a proof of the above generalization of Euler's theorem.